

Proton induced spallation reaction and high power target station

Hanjie Cai

Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS)

- Accelerator-Driven Spallation application
- Challenges for high power target station
- Design study on high power target station at IMP

Proton induced spallation reaction

- Brief introduction to spallation reaction
- Basic theoretical models
- The description of spallation reaction with INC model

Accelerator-Driven Spallation application

Spallation neutron source

- Material research
- Industry
- Medicine radiotherapy

Subcritical system

Transmutation of long-lived nuclear waste

Neutrino beam facility

Muon-decay neutrino factory

FIG. 2. Schematic layout of the MOMENT facility.

- Accelerator-Driven Spallation application
- Challenges for high power target station
- Design study on high power target station at IMP

Proton induced spallation reaction

- Brief introduction to spallation reaction
- Basic theoretical models
- The description of spallation reaction with INC model

High Power Spallation target

- Solid target options Consist of a solid material in the form of rods, spheres, or plates to produce the neutrons, and coolant flowing between the elements for heat removal.
- Liquid target options Flowing liquid metal acts both as the source of neutrons and the heat removal media.

Challenges for high power target

- The heat removal (Solid target/beam window) will be limited by the heat conduction of the target material and convection-cooling.
- The life time of the target will be limited by the radiation damage, heat shock, et al..
- > Safety, operation, complexity, decommissioning, et al..

The system of Liquid target will be complex: the challenges of techniques.

- > Hydrodynamic instability: Cavitations, Shock waves, Splashing, etc.
- Corrosion and erosion of material: high speed ML
 - corrosion and erosion of material (for LBE now, temperature ~< 550C, velocity ~< 2m/s). Structure material will be a limitation for the beam power increase
- Vapor environment: vacuum, temperature
 - For example: Hg -> 10^5 (Rt-> 200 C); Li boiling T -> 10^1 (10^-9 Pa)
- Chemical-toxicity: HLW / LLW
- Radio-toxicity: HLW (Operation, Safety, Cleanup chemistry, Decommissioning
 - For example: the production of α-radioactive 210Po having 138 days half-life undergoes α-decay, 210Po is volatile
 - For example: Operation: the leakage from the cover gas poses some hazard to operate.

- Accelerator-Driven Spallation application
- Challenges for high power target station
- Design study on high power target station at IMP

Proton induced spallation reaction

- Brief introduction to spallation reaction
- Basic theoretical models
- The description of spallation reaction with INC model

Design study on high power target station at IMP

Granular target concept:

- Gravity driven dense granular flow
- Granular flow heat exchange + Helium cooled
- Windowless

Mass parallel simulation method (GPU) for granular target

- Granular flow simulations and thermalhydraulic analysis.
- Simulation of stochastic granular target: neutronic characteristics analysis, heat deposit, spallation products, etc.

GMT: Code development for the design study of the target station of China-ADS

- Monte Carlo transport module
- INCL + ABLA model for spallation reactions
- Functional modules: data processing module, burnup calculation module, etc.

- Accelerator-Driven Spallation application
- Challenges for high power target station
- Design study on high power target station at IMP

Proton induced spallation reaction

- Brief introduction to spallation reaction
- Basic theoretical models
- The description of spallation reaction with INC model

Proton induced spallation reactions

fast stage ~ 10^{-22} s

slow stage ~ 10^{-16} s

Spallation products

- Neutrons: cascade, evaporation and fission neutrons
- Residues: heavy proton-rich and medium-mass residues

Light clusters: deuteron, tritium, alpha, etc.

	p(1.0 GeV)+Al			p(2.5 GeV)+Al		
	π^{-}	π^0	π^+	π^{-}	π^0	π^+
15 fm/c:	0.067	0.18	0.29	0.38	0.51	0.50
20 fm/c:	0.071	0.18	0.29	0.37	0.47	0.47
35 fm/c:	0.069	0.17	0.26	0.37	0.47	0.46
	p(1.0 GeV)+Au					
	p(1.0	$0 \mathrm{GeV})$	+Au	p(2.5	5 GeV)+Au
	p(1.0) π^-	$\frac{1}{\pi^0}$ GeV)	+Au π^+	p(2.1) π^-	5 GeV π^0	π^+
15 fm/c:	$\begin{array}{c c} \mathbf{p(1.0)} \\ \pi^{-} \\ 0.010 \end{array}$	π^0 GeV) π^0 0.045	+Au π^+ 0.060	p(2.3) π^- 0.35	$5 \text{ GeV} \\ \pi^0 \\ 0.46$	π^+ 0.41
15 fm/c: 20 fm/c:	$\begin{array}{c} \mathbf{p(1.0)} \\ \pi^{-} \\ 0.010 \\ 0.085 \end{array}$	$ \begin{array}{c} \pi^{0} \\ \pi^{0} \\ 0.045 \\ 0.19 \end{array} $	$ \begin{array}{c} +Au \\ \pi^+ \\ 0.060 \\ 0.26 \end{array} $	$\begin{array}{c} \mathbf{p(2.5)} \\ \pi^{-} \\ 0.35 \\ 0.53 \end{array}$	$ \begin{array}{c} 5 \ \mathbf{GeV} \\ \pi^{0} \\ 0.46 \\ 0.60 \end{array} $	π^+ 0.41 0.52

- Accelerator-Driven Spallation application
- Challenges for high power target station
- Design study on high power target station at IMP

Proton induced spallation reaction

- Brief introduction to spallation reaction
- Basic theoretical models
- The description of spallation reaction with INC model

Basic theoretical models

Intra-Nuclear Cascade (INC) model

- Binary nucleon nucleon collisions
- Constant static potential

Boltzmann-Uehling-Uhlenbeck (BUU) model

- One-body phase-space distribution
- Dynamically changing field, minimal fluctuations

> Quantum Molecular Dynamics model

- Time evolution of correlations between partices
- Real fluctuations, two- and three- body potentials

Percolation model

• Fragment mass distributions

- Accelerator-Driven Spallation application
- Challenges for high power target station
- Design study on high power target station at IMP

Proton induced spallation reaction

- Brief introduction to spallation reaction
- Basic theoretical models
- The description of spallation reaction with INC model

The description of spallation reaction with INC model

Cross sections

Cross section	Reaction	Cross section	Reaction
 n-p	Differential	n-p	Elastic
p-p	Differential	p-p	Elastic
π^+-p	Differential	π^p	Elastic
π^- -p	Differential	$\pi^{0}-p$	Elastic
$\pi^ p$	Differential charge exchange	$\pi^0 - n$	elastic
$\pi^0 - p$	Differential	π^+-p	Absorption
π ⁻ -p	Charge exchange	$\pi^{0}-p$	Absorption
p-p	Single-pion production	<i>p</i> p	Double-pion production
<i>n</i> p	Single-pion production	n-p	Double-pion production
π ⁺ p	Single-pion production	π^{0} -p	Single-pion production
$\pi^ p$	Single pion production	$\pi^0 - n$	Single pion production

Why microscopic cross sections instead of particle-nucleus cross sections?

$$\frac{d^2\sigma_{\text{nonelastic}}}{dE \ d\Omega} (E_j, \overrightarrow{\Omega}_j, h_i, E_i, A_k)$$

10⁷ input values are needed for the model! No way!

Pauli block

Phase space occupation probalities:

$$f_{\text{dyn}_{i(j)}} = \frac{1}{2} \frac{1}{V_r V_p} \sum_{k \neq i} \Theta \left(R_r - |\overrightarrow{r}_i - \overrightarrow{r}_k| \right) \Theta \left(R_p - |\overrightarrow{p}_i - \overrightarrow{p}_k| \right)$$

Nuclear in-medium effects

Free space cross sections: well known from experimental data

In-medium nucleon-nucleon cross section

More precise knowledge about the in-medium NNCS is required.

- Accelerator-Driven Spallation application
- Challenges for high power target station
- Design study on high power target station at IMP

Proton induced spallation reaction

- Brief introduction to spallation reaction
- Basic theoretical models
- The description of spallation reaction with INC model

Summary

summary

- High power spallation target is the most innovative component in Accelerator-Driven Systems and is challenging at the same time.
- Spallation reaction is far away form being well described and more precise knowledge is required by the spallation applications.

Thank you !

References:

- 1. T. Sasa, et al., Nucl. Instr. and Meth. A 463 (3) (2001)
- 2. J. Cao, et al. Phys. Rev. ST,17 (2014)
- 3. A. Krasa, Spallation Reaction Physics (2010)
- 4. Z.Q. Feng, Phys. Rev. C, 85 (2012)